OPTOMOS-1000 系统操作说明

公司:	无锡芯鉴半导体技术有限公司
联系人:	闫 工
电话:	13770543872

<i>-</i> ,	系统说明	3
<u> </u>	产品特征参数	3
三、	系统开启	4
四、	光电特性测试系统	5
4.	0 系统界面展示	5
4.	1 暗电流测试	5
4.	2 扫描波长设置	6
4.	3标定标准探测器	6
4.	4 器件测试	7
4.	5 数据保存	8
五、	电学特性测试系统	9
5.	0 系统界面展示	9
5.	1 输出特性测试	9
5.	2 转移特性测试	9
5.	3 IT 测试1	.0
5.	4 电流电压脉冲测试1	.0
5.	5 数据处理1	.0
5.	6运行流程1	.1
5.	7 数据保存1	.1

目录

一、系统说明

OPTOMOS-1000包括光电流、暗电流测试,探测器响应度、量子效率、响应 度测试,瞬态响应测试,输出转移测试以及 I-T 和脉冲电压电流测试功能。具有 紧凑的结构,包括微型光学平台,氙灯光源,单色仪与光学显微镜等;核心模块 采用进口品牌,保证测试精准度,电流测试可以测试到 100fA;支持两端和三端 测试,能够满足广泛测试要求。

二、产品特征参数

1.偏置电压范围±10V

2.电流分辨率<100fA

3.测试电流最大值 1mA

4.单色仪波长范围 0-2200nm

5.瞬态响应采样率 2M

6.电流放大倍数: 10³~10¹¹ 或 10⁵~10¹³

三、系统开启

1 在数据采集器(简称数采)与电流放大器的电源都处于通电状态,打开数采的 开关按钮(图1);

2 打开单色仪开关按钮(图2);

3 打开并触发氙灯开关按钮(图3);

4 双击软件的在桌面的快捷方式(图 4),打开软件;

5鼠标勾选测试需要的测试软件系统(图5);

四、光电特性测试系统

4.0 系统界面展示

第一张图片为器件的光电流测试;第二张图片为标定的光源光功率;第三张 图片为器件的响应度测试;第四张图片为器件的量子效率测试。

4.1 暗电流测试

首先,在红色框中输入器件的测试偏压;其次,点击 ^{Bias-on} 实现加压,再 点击 ^{Monitor} 进行测试。稍微等待几秒后,^{1_Dark (A)} 会显示被测试器件的实时暗 电流。

在其他测试进行前, 需先点击 来停止暗电流的测试, 此时显示的 测试暗电流会以虚线形式显示在第一张光电流测试图上。

BIAS SETTING			
A_Dev (mm^2)	V_Bias (V)		
8	1		
A_Beam (mm^2)	I_Dark (A)		
7.743711	0E+0		
Bias-on	Monitor		

注意:

测试暗电流时必须将光照关闭。

输入完偏压后,需点击 ^{Bias-on} 按钮才能实现加压。

4.2 扫描波长设置

通过此模块设置光谱扫描的起始波长、终止波长以及步进波长;

Curr.Wavelength (nm)显示单色仪当前所处的波长;

Speed

Slow ▼为测试速度选择:选择 Fast 时测试速度较快,选择 Slow 时扫描 速度较慢但精度更高。

SWEEP SETTINGS	
Start Wavelength (nm)	Stop Wavelength (nm)
200	500
Step Wavelength (nm)	Points
1	0
Curr. Wavelength (nm)	Speed
0	Slow 💌

4.3 标定标准探测器

首先在 BIAS SETTING 模块中, 输入。	mm^2) 器件面积	A_Beam (mn 7.743711	^{1^2)} 一光束	夏面积;
然后在 OPERATION 模块中选择 Calibration	▼标定模式,	点击	Start	开始设
定波段的标定;				

当系统弹出提示框,即为标定结束。

OPERATION	
Calibration 👻	D*
Start	Repeat
Stop	Clear

在该模块中可进行单条曲线测量、多条曲线测量、探测率显示、程序停止和 数据清除功能。

OPERATION]
Measurement 🗸	D*
Start	Repeat
Stop	Clear

1. 单条曲线测量

首先在 BIAS SETTING 模块中,输入^{▲Dev (mm^{*}2)} 8 器件面积和^{4_Beam (mm^{*}2)} 7.743711 光束面积; 然后在 OPERATION 模块中选择^{Measurement}▼测量模式,点击 **Start** 开始设 定波段的测量;

此时第一张、第三张和第四张图分别显示被测器件在对应波长的光电流、响 应度和量子效率,第二张图则固定显示已经标定好的光功率;

当系统弹出提示框,即为测量结束。

2. 多条曲线测量

测量	 皇完第一条	曲线后,	在 BIA	S SETTING	模块中设置新的偏压,	点击
Bias-on	实现加压,	再点击	Repeat	开始下一条日	曲线的自动测量;	

此时测量的上一条曲线被保存在图片上,程序将自动开始新曲线的测试;

V_Bias=0V V_Bias=-1V 1.5

第一张图片的右上角模块,可观察不同测量偏压所对应的曲线。²------注意:

如果需要对当前测试的曲线重新测试,点击 ^{start} 即可,此时不会清除之前的 曲线,但将对当前测试的曲线开始重新测试。

3. 探测率显示

点击 按钮,系统弹出探测率图表。

注意: 只有在点击 [▶] 按钮后, 探测率的数据和图片才会保存, 否则不会保 存。

4. 程序停止、数据清除

点击 stop 按钮,系统弹出提示框,即为测量结束。

点击 按钮,此时除第二张图(标定功率图)外,其他三幅图的所有 曲线数据会被清除。

4.5 数据保存

SAVE SETTING	
Path	
Name (png, xls)	
Save	

注意: 当文件名称存在时, 会将原有文件覆盖。

五、电学特性测试系统

5.0 系统界面展示

第一张图片为输出特性测试;第二张图片为转移特性测试;第三张图片为 IT 测试;第四张图片为电流电压脉冲测试。

5.1 输出特性测试

红色框位置分别设置 Vds、Vgs 的起始电压、终止电压以及步进电压。

0	Output Characteristic					
	Start Vds (V) -5	Stop Vds (V) 5	Step Volt (V) 0.1			
	Start Vgs (V) -5	Stop Vgs (V) 5	Step Volt (V) 1			
	Log Y 🗸 👻	Start	Stop			
	Log Y 🔹 Name (png, xls)	Start	Stop			

5.2 转移特性测试

红色框位置分别设置 Vds 的起始电压、终止电压、步进电压,以及三端 Vds

电压。

gs (V) Step Volt	(V) Vds (V)
0.1	0
Start	Stop
	Save
	gs (V) Step Volt 0.1 Start

5.3 I-T 测试

红色框位置分别设置 Vgs、Vds 电压值以及测试总时长。

Bias-stress Cl	naracteristic	
Vgs (V) 0	Vds (V) 0	Stress time (s) 0
Linear Y 💌	Start	Stop
Name (png, xls)		
		Save

5.4 电流电压脉冲测试

红色框位置分别设置起始电压、终止电压、步进电压、Vgs 电压以及每个脉 冲高电平持续持续时间(time(s))。

5.5 数据处理

通过各个模块的^{Linear V} · 控件:可对 Y 轴数据进行线性(Linear Y)和对数 (Log Y)处理。

5.6 运行流程

完成上述参数设置后,点击各模块的 ^{start} 按钮开始进行测试;点击各模块的 ^{stop} 按钮,即可暂停测试。

5.7 数据保存

首先点击红色框。 *** , 选择保存路径; 然后各个模块的 Name 文本框中设置文件保存名称; 最后点击 *** , 即可完成数据 和图片的保存; 注意:

电学特性测试系统的所有测试数据和图片共用同一个路径文件夹; 当文件名称存在时,会将原有文件覆盖。